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A JENSEN–ROHRLICH TYPE FORMULA FOR THE HYPERBOLIC

3-SPACE

S. HERRERO, Ö. IMAMOḠLU, A.-M. VON PIPPICH, AND Á. TÓTH

Abstract. In this article we give a Jensen–Rohrlich type formula for a certain class of auto-
morphic functions on the hyperbolic 3-space for the group PSL2(OK).

1. Introduction

1.1. Rohrlich’s formula. The classical Jensen’s formula is a well-known theorem of complex
analysis which characterizes, for a meromorphic function f on the unit disc, the value of the
integral of log |f(z)| on the unit circle in terms of the zeros and poles of f inside the unit disc.
An important theorem of Rohrlich [11] establishes a version of Jensen’s formula for modular
functions f with respect to the full modular group PSL2(Z) and expresses the integral of
log |f(z)| over a fundamental domain in terms of special values of Dedekind’s eta function.
To be more precise, let H2 = {τ = x + iy | x, y ∈ R, y > 0}, Γ = PSL2(Z), and X =

PSL2(Z)\H2. Let Γτ denote the stabilizer subgroup of τ in Γ and let ν(τ) denote its order.
The hyperbolic measure on X is given by dµ(τ) = dxdy/y2 and the hyperbolic Laplacian on X
is given by

∆ = −y2
(

∂2

∂x2
+

∂2

∂y2

)
.

The quotient space X has the structure of a hyperbolic Riemann surface of finite hyperbolic
volume vol(X) = π/3, admitting one cusp which we denote by ∞. The field of modular
functions on X is given by C(j(τ)), with j(τ) denoting Klein’s j-invariant [13] satisfying

j(τ) =
1

qτ
+ 744 +O(qτ ),

as τ → ∞, where qτ = e2πiτ .
Consider now the class M of functions F : H2 → R∪{∞} satisfying the following properties:

(M1) The function F (τ) is Γ-invariant and can therefore be considered as a function on X .
(M2) There exist distinct points τ1, . . . , τm ∈ X together with constants n1, . . . , nm ∈ Z

satisfying
∑m

ℓ=1 nℓ = 0 such that, for ℓ ∈ {1, . . . , m}, the bound

F (τ) = nℓ ν(τℓ) log |τ − τℓ|−1 +O(1),

as τ → τℓ, holds and such that F (τ) is smooth at any point τ ∈ X with τ 6= τℓ for
ℓ ∈ {1, . . . , m}.

(M3) For τ ∈ X with τ 6= τℓ for ℓ ∈ {1, . . . , m}, we have ∆F (τ) = 0.
(M4) The function F (τ) is square-integrable on X .

If F : H2 → R∪{∞} satisfies the properties (M1)–(M4), then the limit F (∞) := limτ→∞ F (τ)
exists and we have the equality

F (τ) = log |f(τ)|, with f(τ) = eF (∞)

m∏

ℓ=1

(j(τ)− j(τℓ))
−nℓ .(1.1)
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Now, Rohrlich’s Theorem can be rephrased as follows

Theorem 1.1 (Rohrlich [11]). Let F : H2 → R∪{∞} be in M, the class of functions satisfying

the properties (M1)–(M4). Then, we have the equality

3

π

∫

X

F (τ)dµ(τ) = F (∞) + 6
m∑

ℓ=1

nℓ log
(
|η(τℓ)|4 Im(τℓ)

)
,

where η(τ) = q
1/24
τ

∏∞
n=1 (1− qnτ ) is the classical Dedekind’s eta function.

Observe that the function on the right hand side of the equality in Theorem 1.1 is given by
the constant term in the Laurent expansion of the non-holomorphic Eisenstein series E∞(τ, s)
at s = 1. For τ ∈ H2 and s ∈ C with Re(s) > 1, this series is defined by

E∞(τ, s) =
∑

γ∈Γ∞\Γ
Im(γτ)s.

The Eisenstein series is Γ-invariant with respect to τ and holomorphic in s, and it admits a
meromorphic continuation to the whole complex s-plane with a simple pole at s = 1 with
residue

ress=1E∞(P, s) =
1

vol(X)
=

3

π
.

In this context, the well-known Kronecker’s limit formula for PSL2(Z) (see, e.g., [14]) states

lim
s→1

(
E∞(z, s)− 3

π(s− 1)

)
= −3

π
log

(
|η(z)|4 Im(z)

)
+ C,

where C = 6(1 − 12 ζ ′(−1) − log(4π))/π and ζ(s) denotes the Riemann zeta function. Note
that the constant C does not appear in Theorem 1.1, since

∑m
ℓ=1 nℓ = 0.

The proof of Rohrlich’s formula is an application of this Kronecker’s limit formula. The
formula admits several generalizations and has many applications in number theory, see, e.g. [5],
[8]. There is also an extension of Rohrlich’s formula which has applications to the computation
of arithmetic intersection numbers in Arakelov theory, see, e.g., [9].

1.2. Purpose of the article. The goal of this paper is to give an analogue of Rohrlich’s
formula in H3, the hyperbolic 3-space. We write H3 = {P = z + rj | z ∈ C, r ∈ R>0},
which is a subset of the usual quaternions R[i, j, k], and we will view z and r as coordinate
functions on H3. The quaternionic norm on R[i, j, k] induces a norm on H3 given explicitly by

‖P‖ =
√
|z|2 + r2. We let K be an imaginary quadratic field, OK its ring of integers, hK its

class number, and dK its discriminant. From now on, we let Γ = PSL2(OK) ⊂ PSL2(C), which
is a discrete and cofinite subgroup, and we let X = Γ\H3. By ΓP we denote the stabilizer
subgroup of P in Γ and by ν(P ) its order. By dµ(P ) we denote the hyperbolic measure on X
and by ∆ the hyperbolic Laplacian on X (see 2.1). The quotient space X has finite hyperbolic
volume, which is explicitly given by

(1.2) vol(X) =
|dK |3/2
4π2

ζK(2)

with ζK(s) denoting the Dedekind zeta function, and it admits hK cusps (see Section 2).
For P ∈ H3 and s ∈ C with Re(s) > 1, the Eisenstein series associated to the cusp ∞ is

defined by

E∞(P, s) =
∑

γ∈Γ′
∞\Γ

r(γP )s+1,
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where Γ′
∞ is the maximal unipotent subgroup of the stabilizer group Γ∞ of ∞ in Γ. The Eisen-

stein series is Γ-invariant with respect to P and holomorphic in s, and it admits a meromorphic
continuation to the whole complex s-plane with a simple pole at s = 1 with residue

ress=1E∞(P, s) =
covol(OK)

vol(X)
=

2π2

|dK |ζK(2)
.(1.3)

Here, covol(OK) denotes the euclidean covolume of the lattice OK in C. In this case, Kronecker’s
limit formula states

lim
s→1

(
E∞(P, s)− 2π2

|dK |ζK(2)(s− 1)

)
= − 2π2

|dK |ζK(2)
log (η∞(P ) r(P )) + CK ,(1.4)

where CK is an explicit constant depending only onK. Here, the function η∞ : H3 → R satisfies
η∞(γP ) = ‖cP + d‖2η∞(P ) for any γ = ( a b

c d ) ∈ Γ and can be considered as the analogue of the
weight 2 real-analytic modular form |η(z)|4. The function η∞ is essentially the function defined
by Asai in [1]. More precisely, we have

−2π2 log (η∞(P ))

|dK |ζK(2)
=

|O×
K |
2

r2 + 4π
∑

µ∈D−1

µ6=0

|µ|ϕ∞,∞(µ; 1) rK1(4π|µ|r)e2πi tr(µz).

Here, we employed the notation of Section 2. The value ϕ∞,∞(µ; 1) can be explicitly given
in terms of special values of certain generalized divisors sums. For these results, we refer the
reader to [3], Chapter 8, Sections 1–3.
Consider now the class A of functions F : H3 → R∪{∞} satisfying the following properties:

(A1) The function F (P ) is Γ-invariant and can therefore be considered as a function on X .
(A2) There exist distinct points Q1, . . . , Qm ∈ X together with constants c1, . . . , cm ∈ R

satisfying
∑m

ℓ=1 cℓ = 0 such that, for ℓ ∈ {1, . . . , m}, the bound

F (P ) = cℓ ν(Qℓ)
rℓ

‖P −Qℓ‖
+O(1),

as P → Qℓ = zℓ + rℓj, holds and F (P ) is smooth at any point P ∈ X with P 6= Qℓ for
ℓ ∈ {1, . . . , m}.

(A3) For P ∈ X with P 6= Qℓ for ℓ ∈ {1, . . . , m}, we have ∆F (P ) = 0.
(A4) The function F (P ) is square-integrable on X .

We note that the bounds in (M2) and (A2) are the natural bounds that arise from the type
of singularities of the corresponding Green’s functions.
In Proposition 5.2 of Section 5, we will show that, if F : H3 → R∪{∞} satisfies the properties

(A1)–(A4), then the limit F (∞) := limr→∞ F (P ) exists, and we will prove the analogue of (1.1)
in this case. Our main theorem is

Theorem 1.2. Let F : H3 → R ∪ {∞} be in A, the class of functions satisfying the properties

(A1)–(A4). Then, we have the equality

1

vol(X)

∫

X

F (P )dµ(P ) = F (∞) +
2π

vol(X)

m∑

ℓ=1

cℓ log
(
η∞(Qℓ) rℓ

)
.

Note that, in analogy with Rohrlich’s Theorem, the constant CK arising in (1.4) does not
appear in Theorem 1.2, since

∑m
ℓ=1 cℓ = 0.

It is known to the experts that Rohrlich’s formula can be proven using the theory of the
resolvent kernel of the hyperbolic Laplacian and our proof of Theorem 1.2 is a generalization
of this method to the hyperbolic 3-space. The advantage of this method is that it can be
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generalized to other settings such as the case of the hyperbolic n-space. This method also
naturally leads to an analogue of the function log |j(τ1) − j(τ2)| (see the function defined in
(5.1)). The properties of this function play a central role in our proof of Theorem 1.2, and the
proof of these follow from properties of the resolvent kernel and of Niebur type Poincaré series.

1.3. Outline of the article. The paper is organized as follows. In Section 2, we begin by
collecting background information. In Section 3, we compute the Fourier expansion of the re-
solvent kernel associated to the hyperbolic Laplacian on X . In addition, we give the Fourier
expansion of the Niebur type Poincaré series which appear as coefficients in the Fourier expan-
sion of the resolvent kernel. To the best of the authors’ knowledge these expansions have not
been explicitly stated elsewhere in the literature and are of independent interest. In Section 4,
we study some of the analytic properties of the Niebur type Poincaré series and we prove the
meromorphic continuation of the resolvent kernel via its Fourier expansion. In Section 5, we
construct the above mentioned analogue of log |j(τ1) − j(τ2)|, prove its main properties, and
give our proof of Theorem 1.2 using these properties. Identities involving special functions that
are needed in the paper as well as some technical lemmas are given in the Appendix and in
Section 6, respectively.

1.4. Acknowledgements. The authors would like to thank the anonymous referee for help-
ful comments on an earlier version of this paper. Herrero, von Pippich, and Tóth thank the
Institute for Mathematical Research FIM at ETH Zürich for providing a stimulating and com-
fortable atmosphere during their visits to Zürich. Herrero, Imamoḡlu, and von Pippich thank
Jürg Kramer and the Department of Mathematics at Humboldt-Universität zu Berlin for their
kind hospitality during the preparation of this work. Tóth thanks the support of the MTA
Rényi Intézet Lendület Automorphic Research Group and the NKFIH (National Research,
Development and Innovation Office) grant ERC HU 15 118946.

2. Background material

2.1. The hyperbolic 3-space and the group PSL2(OK). Let H3 := {P = z + rj | z ∈
C, r ∈ R>0} denote the upper half-space model of the three-dimensional hyperbolic space,
where {1, i, j, k} is the standard basis for the quaternions R[i, j, k]. The quaternionic norm on

R[i, j, k] induces a norm on H3 given explicitly by ‖P‖ = ‖z+ rj‖ =
√
|z|2 + r2. For z ∈ C, we

set tr(z) := z + z. The hyperbolic volume element, resp. the hyperbolic Laplacian are given as

dµ(P ) :=
dx dy dr

r3
, resp. ∆ := −r2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂r2

)
+ r

∂

∂r
.(2.1)

Let d(P,Q) denote the hyperbolic distance between the points P and Q. An explicit formula
is given by

cosh (d(P,Q)) =
|z1 − z2|2 + r21 + r22

2r1r2
,(2.2)

where P = z1 + r1j and Q = z2 + r2j. An element γ =
(
a b
c d

)
∈ PSL2(C) acts on H3 by

γP =
(az + b)(cz + d) + acr2

|cz + d|2 + |c|2r2 +
r

|cz + d|2 + |c|2r2 j,

where P = z + rj. By abuse of notation, we represent an element of PSL2(C) by a matrix.
As mentioned in the Introduction, we let K be an imaginary quadratic field, OK its ring of

integers, hK its class number, and dK its discriminant. We let Γ = PSL2(OK) ⊂ PSL2(C) and
we let X := Γ\H3. By ΓP we denote the stabilizer subgroup of P in Γ and by ν(P ) its order.
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In a slight abuse of notation, we will at times identify X with a fundamental domain in H3

and identify points on X with their preimages in such a fundamental domain. The hyperbolic
volume vol(X) of X is given by formula (1.2) in terms of a special value of Dedekind’s zeta
function, which is defined by

ζK(s) =
∑

I⊆OK ideal
I 6=(0)

N(I)−s,

where s ∈ C with Re(s) > 1 and N(I) denotes the norm of I.
A cusp of X is the Γ-orbit of a parabolic fixed point of Γ, and X has hK cusps. From now on

we fix a complete set of representatives CΓ ⊆ P1(K) for the cusps ofX . We write elements of CΓ

as [a : b] for a, b ∈ OK , not both equal to 0, and we write ∞ := [1 : 0] and assume that ∞ ∈ CΓ.
Furthermore, for any cusp κ = [a : b] ∈ CΓ, we fix a scaling matrix σκ = ( a ∗

b ∗ ) ∈ PSL2(K) such
that σκ∞ = κ and

σ−1
κ Γκσκ =

{(
u λ
0 u−1

) ∣∣∣∣ u ∈ O×
K , λ ∈ Λκ

}
(2.3)

with the full lattice Λκ = (aOK + bOK)
−2 ⊆ C (see, e.g., [15]). For the cusp ∞, we choose σ∞

to be the identity. Furthermore, for the maximal unipotent subgroup Γ′
κ, which consists of all

the parabolic elements of Γκ together with the identity, we have

σ−1
κ Γ′

κσκ =

{(
1 λ
0 1

)∣∣∣∣λ ∈ Λκ

}
.(2.4)

We let Λ∗
κ = {ν ∈ C : tr(νλ) ∈ Z for any λ ∈ Λκ} denote its dual lattice. In particular, we

have Λ∞ = OK and Λ∗
∞ = D−1 with D−1 = {ν ∈ K | tr(νλ) ∈ Z for any λ ∈ OK} denoting the

inverse different.

2.2. Fourier expansion of automorphic functions. A function f : H
3 → C is called

automorphic with respect to Γ if it is Γ-invariant, that is, f(γP ) = f(P ) for any γ ∈ Γ. An
important tool to study the behavior of an automorphic function f at a cusp ξ ∈ CΓ, with
scaling matrix σξ, is its Fourier expansion. More precisely, since the function P 7→ f(σξP ) is
σ−1
ξ Γ′

ξσξ-invariant, employing (2.4), we have f(σξ(P + λ)) = f(σξP ) for any λ ∈ Λξ. If f is
smooth, the Fourier expansion of f with respect to the cusp ξ is therefore of the form

f(σξP ) =
∑

µ∈Λ∗
ξ

aµ(r)e
2πi tr(µz),(2.5)

where P = z + rj and with Fourier coefficients given by

aµ(r) =
1

covol(Λξ)

∫

C/Λξ

f(σξP )e−2πi tr(µz)dz.

If we assume that f is an eigenfunction of the hyperbolic Laplacian, satisfying ∆f = (1−s2)f for
some s ∈ C with s 6= 0, and that f is of polynomial growth as r → ∞, that is f(z+rj) = O(rC)
as r → ∞ for some constant C, then the expansion (2.5) has the form (see, e.g., [3], Theorem
3.1, p. 105)

f(σξP ) = a0r
1+s + b0r

1−s +
∑

µ∈Λ∗
ξ

µ6=0

aµ rKs(4π|µ|r)e2πi tr(µz)(2.6)

with a0, b0, aµ ∈ C and with Ks(·) denoting the modified Bessel function of the second kind.
5



2.3. Poincaré series. For later purposes, we define two families of eigenfunctions of the hy-
perbolic Laplacian, namely the Eisenstein series and the Niebur type Poincaré series, which
from now one will be called Niebur–Poincaré series for simplicity. For this, let κ ∈ CΓ be a
cusp with scaling matrix σκ.

For P ∈ H3 and s ∈ C with Re(s) > 1, the Eisenstein series associated to the cusp κ is given
by

Eκ(P, s) =
∑

γ∈Γ′
κ\Γ

r(σ−1
κ γP )s+1.

The Eisenstein series is an automorphic function for Γ and it is holomorphic in s in the region
Re(s) > 1. Moreover, it satisfies the differential equation

(
∆− (1− s2)

)
Eκ(P, s) = 0,

i.e. it is an eigenfunction of ∆. For s ∈ C with Re(s) > 1, the Eisenstein series admits a Fourier
expansion of the form (2.6) given by (see, e.g., [3], Theorem 4.1, p. 111)

Eκ(σξP, s) = δκ,ξ[Γκ : Γ′
κ] r

1+s + ϕκ,ξ(0; s) r
1−s +

21+sπs

Γ(s)

∑

µ∈Λ∗
ξ

µ6=0

|µ|sϕκ,ξ(µ; s) rKs(4π|µ|r)e2πi tr(µz),

(2.7)

where δκ,ξ is Kronecker’s delta symbol and, for s ∈ C with Re(s) > 1, we have set

ϕκ,ξ(µ; s) :=
π

covol(Λξ)s

∑

( ∗ ∗
c d )∈σ

−1
κ Rκ,ξσξ

e2πi tr(µ
d
c
)

|c|2s+2
(2.8)

with

Rκ,ξ := Γ′
κ\{γ ∈ Γ : γξ 6= κ}/Γ′

ξ.(2.9)

Note that {γ ∈ Γ : γξ 6= κ} = Γ if ξ 6= κ. It is known (see, e.g., [3], [12]) that the function
ϕκ,ξ(µ; s) admits a meromorphic continuation to all s ∈ C, which is holomorphic at s = 1 if
µ 6= 0. It is also well-known that one can use the above Fourier expansion in order to prove that
Eκ(P, s) admits a meromorphic continuation to the whole complex s-plane. There is always a
simple pole at s = 1 with residue given by

(2.10) ress=1Eκ(P, s) =
covol(Λκ)

vol(X)
= ress=1 ϕκ,κ(0; s).

In case that κ = ∞, the residue is explicitly given by (1.3) and we have

ϕ∞,∞(0; s) =
π|O×

K |
hK |dK |1/2s

∑

χ

L(s, χ)

L(s+ 1, χ)
,

where the sum runs over all characters χ of the class group of K and L(s, χ) denotes the
associated L-function (see, e.g., [3], Chapter 8, Theorems 1.5 and 2.11). From these, a straight-
forward computation yields the Kronecker’s limit formula (1.4) stated in the Introduction.

Finally, we recall the definition of the Niebur–Poincaré series. For P ∈ H3 and s ∈ C with
Re(s) > 1, the Niebur–Poincaré series associated to the cusp κ and to ν ∈ Λ∗

κ, ν 6= 0, is given
by

Fκ,ν(P, s) =
∑

γ∈Γ′
κ\Γ

r(σ−1
κ γP ) Is

(
4π|ν|r(σ−1

κ γP )
)
e2πi tr(νz(σ

−1
κ γP )),(2.11)

6



where Is(·) denotes the modified Bessel function of the first kind. We recall that the Niebur–
Poincaré series converges absolutely and defines an automorphic function, which is holomorphic
for s ∈ C with Re(s) > 1 (see, e.g., [10]). Moreover, it satisfies the differential equation

(
∆− (1− s2)

)
Fκ,ν(·, s) = 0,

i.e. it is an eigenfunction of ∆.

2.4. The resolvent kernel. The resolvent kernel for the hyperbolic Laplacian is given by the
automorphic Green’s function. For P,Q ∈ H3 with P 6= γQ for any γ ∈ Γ, and s ∈ C with
Re(s) > 1, it is defined by

Gs(P,Q) =
1

2π

∑

γ∈Γ
ϕs (cosh(d(P, γQ))) ,

where ϕs(t) = (t+
√
t2 − 1)−s(t2− 1)−1/2. The series defining Gs(P,Q) converges uniformly on

compact subsets of {(P,Q) ∈ H3 × H3 : P 6= γQ for any γ ∈ Γ)} × {s ∈ C : Re(s) > 1}. We
recall the following well-known properties of Gs(P,Q) (see, e.g., [3]):

(G1) The function Gs(P,Q) is Γ-invariant in each variable and can therefore be considered as
a function on X×X , away from the diagonal. Moreover, we have Gs(P,Q) = Gs(Q,P ).

(G2) For fixed Q ∈ X , we have a singularity of the form

Gs(P,Q) =
ν(Q)

2π

1

d(P,Q)
+OQ(1),

as P → Q.
(G3) For P,Q ∈ X with P 6= Q, we have (∆P − (1− s2))Gs(P,Q) = 0.

The Green’s function is holomorphic for s ∈ C with Re(s) > 1 and it admits a meromorphic
continuation to the whole complex s-plane with a simple pole at s = 1 with residue

(2.12) ress=1 Gs(P,Q) =
1

vol(X)
.

Moreover, using the spectral expansion of Gs(P,Q) given in [3] (Proposition 4.6, p. 285), it is
easy to see that the function

P 7→ lim
s→1

(
Gs(P,Q)− 2

vol(X)(s2 − 1)

)

is square-integrable on X , for fixed Q ∈ X , and orthogonal to the constant functions, i.e.

(2.13)

∫

X

lim
s→1

(
Gs(P,Q)− 2

vol(X)(s2 − 1)

)
dµ(P ) = 0.

3. Fourier expansions

In this section, we compute the Fourier expansion of the Green’s function and that of the
Niebur–Poincaré series. Part of the computations involve explicit evaluations of certain integrals
in terms of special functions. The proof of these technical identities is postponed to Section 6
in order to keep the exposition simple.

Proposition 3.1. Let P = z + rj ∈ H
3 with r > r(σ−1

ξ γQ) for any γ ∈ Γ, and s ∈ C with

Re(s) > 1. Then, we have the following Fourier expansion

Gs(σξP,Q) =
1

covol(Λξ)

(
r1−s

s
Eξ(Q, s) + 2

∑

µ∈Λ∗
ξ

µ6=0

Fξ,−µ(Q, s) rKs(4π|µ|r)e2πi tr(µz)
)
.
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Proof. The Fourier coefficient aµ(r) = aµ,s(r, Q) in the Fourier expansion (2.5) of the function
P 7→ Gs(P,Q) with respect to the cusp ξ is given by

aµ,s(r, Q) =
1

covol(Λξ)

∫

C/Λξ

Gs(σξP,Q)e−2πi tr(µz)dz.

To compute this integral, we start by writing

Gs(σξP,Q) =
1

2π

∑

γ∈Γ′
ξ\Γ

∑

η∈Γ′
ξ

ϕs

(
cosh(d(η−1σξP, γQ))

)

=
1

2π

∑

γ∈Γ′
ξ
\Γ

∑

λ∈Λξ

ϕs

(
cosh(d(P + λ, σ−1

ξ γQ))
)
,

where for the last equality we employed (2.4), namely the identity σ−1
ξ Γ′

ξσξ = {( 1 λ
0 1 )| λ ∈ Λξ}.

Hence, we get

aµ,s(r, Q) =
1

2π covol(Λξ)

∑

γ∈Γ′
ξ
\Γ

∫

C

ϕs

(
cosh(d(P, σ−1

ξ γQ))
)
e−2πi tr(µz)dz.

Now, we set z̃ := z(σ−1
ξ γQ) and r̃ := r(σ−1

ξ γQ). Using formula (2.2), namely

cosh(d(P, σ−1
ξ γQ)) =

|z − z̃|2 + r2 + r̃2

2rr̃
,

we obtain by a change of variables (z 7→ z + z̃),

aµ,s(r, Q) =
1

2π covol(Λξ)

∑

γ∈Γ′
ξ\Γ

e−2πi tr(µz̃)Iµ,s(r, r̃),

where we have set

Iµ,s(r, r̃) :=

∫

C

ϕs

( |z|2 + r2 + r̃2

2rr̃

)
e−2πi tr(µz)dz.

By Lemma 6.1, we have

Iµ,s(r, r̃) =

{
2πs−1r1−sr̃s+1, if µ = 0,

4πrr̃Ks(4π|ν|r)Is(4π|ν|r̃), if µ 6= 0.

Summing up and recalling that r̃ = r(σ−1
ξ γQ), we conclude

a0,s(r, Q) =
1

covol(Λξ)

r1−s

s

∑

γ∈Γ′
ξ
\Γ
r(σ−1

ξ γQ)s+1 =
1

covol(Λξ)

r1−s

s
Eξ(Q, s)

and, for µ 6= 0, we derive

aµ,s(r, Q) =
2

covol(Λξ)
rKs(4π|µ|r)

∑

γ∈Γ′
ξ
\Γ
r̃Is(4π|µ|r̃)e−2πi tr(µz̃)

=
2

covol(Λξ)
rKs(4π|µ|r)Fξ,−µ(Q, s),

as asserted. This completes the proof. �
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We proceed by computing the Fourier expansion of the Niebur–Poincaré series Fκ,ν(P, s),
where κ ∈ CΓ and ν ∈ Λ∗

κ, ν 6= 0. For this, we define the function Js : C
× → C by

Js(z) :=

{
Js(4π

√
z)Js(4π

√
z), if Re(z) ≥ 0,

Is(4π
√
−z)Is(4π

√
−z), if Re(z) ≤ 0.

(3.1)

Using the identity Is(z) = e∓sπ/2Js(ze
±πi/2) for z ∈ C with Re(z) > 0, it is easy to verify that

Js(z) is well-defined for z ∈ C, z 6= 0, with Re(z) = 0. With this, we have

Proposition 3.2. Let P = z+rj ∈ H3 and s ∈ C with Re(s) > 1. Then, we have the following

Fourier expansion

Fκ,ν(σξP, s) = δκ,ξ rIs(4π|ν|r)
∑

u∈O×
K/{±1}

e2πi tr(νu
2z) +

covol(Λκ)

covol(Λξ)

(2π|ν|)s
sΓ(s)

ϕξ,κ(−ν; s) r1−s

+
∑

µ∈Λ∗
ξ

µ6=0

Bκ,ξ(ν, µ; s) rKs(4π|µ|r)e2πi tr(µz).

Here,

Bκ,ξ(ν, µ; s) :=
2π

covol(Λξ)

∑

(a ∗
c d )∈σ

−1
κ Rκ,ξσξ

e2πi tr((νa+µd)/c)

|c|2 Js

(νµ
c2

)
,

and ϕξ,κ(−ν; s), Rκ,ξ, and Js(·) are given by (2.8), (2.9), (3.1), respectively.

Proof. To simplify the notation, we set f(P ) := r(P )Is (4π|ν|r(P )) e2πi tr(νz(P )) and we define

F̂κ,ν(P, s) :=
∑

γ∈Rκ,ξ

∑

η∈Γ′
ξ

f(σ−1
κ γηP ).

Recalling the definition (2.11) of the Niebur-Poincaré series, we then deduce

Fκ,ν(σξP, s) =
∑

γ∈Γ′
κ\Γ

f
(
σ−1
κ γσξP

)

= δκ,ξ
∑

γ∈Γ′
κ\Γκ

f
(
σ−1
κ γσξP

)
+ F̂κ,ν(σξP, s).(3.2)

To treat the first term in (3.2), we assume that δκ,ξ = 1, that is κ = ξ and σκ = σξ. Then

δκ,ξ
∑

γ∈Γ′
κ\Γκ

f
(
σ−1
κ γσξP

)
=

∑

γ∈σ−1
κ (Γ′

κ\Γκ)σκ

f (γP ) = rIs(4π|ν|r)
∑

u∈O×
K/{±1}

e2πi tr(νu
2z),

where for the second equality we note that σ−1
κ (Γ′

κ\Γκ)σκ
∼=

{(
u 0
0 u−1

)
| u ∈ O

×
K

}
/{±1}, which

is an immediate consequence of (2.3) and (2.4), and we used the identity
(
u 0
0 u−1

)
P = u2z + rj

for u ∈ O×
K .

To treat the second term in (3.2), we note that the function F̂κ,ν(σξ·, s) is σ−1
ξ Γ′

ξσξ-invariant.

The Fourier coefficient bµ(r) = bµ,κ,ν(r, s) in the Fourier expansion (2.5) of the function F̂κ,ν(P, s)
with respect to the cusp ξ is given by

bµ,κ,ν(r, s) =
1

covol(Λξ)

∫

C/Λξ

F̂κ,ν(σξP, s)e
−2πi tr(µz)dz.

9



To compute this integral, we start by writing

F̂κ,ν(σξP, s) =
∑

γ∈Rκ,ξ

∑

η∈Γ′
ξ

f
(
σ−1
κ γησξP

)

=
∑

γ∈Rκ,ξ

∑

λ∈Λξ

f
(
σ−1
κ γσξ(P + λ)

)
,

where for the last equality we employed (2.4), namely the identity σ−1
ξ Γ′

ξσξ = {( 1 λ
0 1 )| λ ∈ Λξ}.

Hence, we get

bµ,κ,ν(r, s) =
1

covol(Λξ)

∑

γ∈σ−1
κ Rκ,ξσξ

∫

C

f (γP ) e−2πi tr(µz)dz.

Now, writing z(γP ) = a
c
− 1

c
cz+d

|cz+d|2+|c|2r2 with γ =
(
a b
c d

)
and using

f (γP ) =
r

|cz + d|2 + |c|2r2 Is
(

4π|ν|r
|cz + d|2 + |c|2r2

)
e2πi tr(ν

a
c
)e

−2πi tr

(

ν
c

cz+d
|cz+d|2+|c|2r2

)

,

we obtain by a change of variables (z 7→ z − d
c
)

bµ,κ,ν(r, s) =
1

covol(Λξ)

∑

( a ∗
c d )∈σ

−1
κ Rκ,ξσξ

e2πi tr(ν
a
c
+µd

c )I(r, ν, µ, c),

where we have set

I(r, ν, µ, c) :=

∫

C

r

|c|2(|z|2 + r2)
Is

(
4π|ν|r

|c|2(|z|2 + r2)

)
e
−2πi tr

(

ν
z

c2(|z|2+r2)
+µz

)

dz.

By Lemma 6.2, we have

I(r, ν, µ, c) =





2sπs+1|ν|s
|c|2(s+1)s2Γ(s)

r1−s, if µ = 0,

2π

|c|2Js
(
νµ
c2

)
rKs(4π|µ|r), if µ 6= 0.

Summing up, we conclude

b0,κ,ν(r, s) =
1

covol(Λξ)

2sπs+1|ν|s
s2Γ(s)

r1−s
∑

( a ∗
c ∗ )∈σ

−1
κ Rκ,ξσξ

e2πi tr(ν
a
c
)

|c|2s+2

=
1

covol(Λξ)

2sπs+1|ν|s
s2Γ(s)

r1−s
∑

( ∗ ∗
c d )∈σ

−1
ξ

Rξ,κσκ

e2πi tr(−ν d
c
)

|c|2s+2
.

Recalling definition (2.8), we get that

b0,κ,ν(r, s) =
covol(Λκ)

covol(Λξ)

2sπs|ν|s
sΓ(s)

r1−sϕξ,κ(−ν; s),

as asserted. Furthermore, for µ 6= 0, we conclude

bµ,κ,ν(r, s) =
2π

covol(Λξ)
rKs(4π|µ|r)

∑

(a ∗
c d )∈σ

−1
κ Rκ,ξσξ

e2πi tr(ν
a
c
+µd

c
)

|c|2 Js

(νµ
c2

)

= Bκ,ξ(ν, µ; s)rKs(4π|µ|r).
10



This completes the proof. �

4. Analytic continuation

The main goal of this section is to prove the meromorphic continuation of the Green’s function
via its Fourier expansion. We remark here that the existence of this meromorphic continuation
is well-known and follows from the spectral expansion of the Green’s function (see, e.g., [3],
Proposition 4.6, p. 285). Here we choose a different approach as we also need precise information
about the growth at the cusp ∞ of this meromorphic continuation. In order to do this, we
first analytically continue the Niebur–Poincaré series F∞,ν(P, s) by using the explicit Fourier
expansion given in Proposition 3.2 with ξ = ∞. Before doing so, we need the following result.

Lemma 4.1. We have the bounds

|Js(z)| =




O
(
|z|Re(s)

)
, for 0 < |z| ≤ 1,

O
(
e8π

√
|z||z|Re(s)

)
, for |z| > 1,

holding uniformly for s in any compact set contained in Re(s) > −1/2.

Proof. Using the asymptotic formula (A.15), we conclude

Js(z) ∼
|4π2z|s

Γ(s+ 1)2
,

for z → 0. This implies the first bound. In order to obtain the second bound, we use (A.13)
and get

Is(4π
√
−z)Is(4π

√
−z) = O

(
|z|Re(s)e8πRe(

√
−z)

)
,

for z → ∞,Re(z) ≤ 0. On the other hand, formula (A.14) gives

Js(4π
√
z)Js(4π

√
z) = O

(
|z|Re(s)e8π| Im(

√
z)|
)
,

for z → ∞,Re(z) ≥ 0. The second bound follows easily from these estimates. Since the used
asymptotic formulas and bounds are uniform for s in any compact set contained in Re(s) >
−1/2, we conclude that these estimates are also uniform. This completes the proof of the
Lemma. �

Given ν, µ ∈ D−1 both non zero and s ∈ C define

Z(ν, µ; s) :=
∑

c∈OK/{±1}
c 6=0

|S(ν, µ, c)|
|c|2+2s

,

where

S(ν, µ, c) :=
∑

u,u∗∈OK/cOK

uu∗=1

e2πi tr((uν+u∗µ)/c).

By using the trivial bound for |S(ν, µ, c)|, namely |S(ν, µ, c)| ≤ N(c) = |c|2, one sees that the
series Z(ν, µ; s) converges absolutely for Re(s) > 1.

Lemma 4.2. The series Z(ν, µ; s) converges absolutely for Re(s) > 1/2. Moreover, there exists

α > 0 such that the bound

|Z(ν, µ; s)| = O
(
N(νµD2)α

)

holds uniformly for s in any compact set contained in Re(s) > 1/2.
11



Proof. This result is essentially due to Sarnak. Indeed, from the proof of Proposition 3.4 in [12]
we have

∑

c∈OK/{±1}
c 6=0

|S(ν, µ, c)|
|c|2+2σ

≤ |O×
K |
2

∏

P⊂OK

νµD2⊆P

(
1−N(P )−σ

)−1
∏

P⊂OK

P 6=(0)

(
1 + 2N(P )−

1
2
−σ +

N(P )−2σ

1−N(P )−σ

)
,

where σ = Re(s) and the products run over prime ideals P ⊂ OK . The infinite product

∏

P⊂OK

P 6=(0)

(
1 + 2N(P )−

1
2
−σ +

N(P )−2σ

1−N(P )−σ

)

converges for σ > 1/2, proving the absolute convergence of Z(ν, µ, s) for Re(s) > 1/2. On the
other hand, since the function x 7→ (1− x−σ)−1 is decreasing for x > 1 and N(P ) ≥ 2 for any
prime ideal P , we have ∏

P⊂OK

νµD2⊆P

(
1−N(P )−σ

)−1 ≤ (1− 2−σ)−ℓ,

where ℓ is the number of prime ideals dividing νµD2. But ℓ ≤ 2ω#(N(νµD2)), where ω#(n)
is the number of prime divisors of n ∈ N. It is known that ω#(n) = O(log(n)), which gives
(1−2−σ)−ℓ ≤ N(νµD2)α for some α > 0 depending on σ. Moreover, one can choose α > 0 such
that this bound holds uniformly for σ in any fixed compact set contained in σ > 1/2. This
implies the desired bound for |Z(ν, µ, s)|. �

Lemma 4.3. Let ν, µ ∈ D−1 both non zero. Then, the series B∞,∞(ν, µ; s) converges absolutely
for Re(s) > 1/2 and the bound

|B∞,∞(ν, µ; s)| = O
(
e8π

√
|νµ||νµ|Re(s)+1

)

holds uniformly for s in any compact set contained in Re(s) > 1/2.

Proof. We start by writing

B∞,∞(ν, µ; s) =
2π

covol(OK)

∑

c∈OK/{±1}
c 6=0

S(ν, µ, c)

|c|2 Js

(νµ
c2

)
.

For fixed s ∈ C with Re(s) > 1/2, Lemma 4.1 gives
∑

c∈OK/{±1}
c 6=0

∣∣∣∣
S(ν, µ, c)

c2
Js

(νµ
c2

)∣∣∣∣ = O(|νµ|Re(s)
∑

| νµ
c2

|≤1

|S(ν, µ, c)|
|c|2+2Re(s)

+|νµ|Re(s)
∑

| νµ
c2
|>1

|S(ν, µ, c)|
|c|2+2Re(s)

e8π
√

|νµ/c2|
)
.

Since
∑

| νµ
c2
|>1

|S(ν, µ, c)|
|c|2+2Re(s)

e8π
√

|νµ/c2| ≤ e8π
√

|νµ| ·#
{
c ∈ OK : |c|2 < |νµ|

}
= O

(
e8π

√
|νµ||νµ|

)
,

we have
∑

c∈OK/{±1}
c 6=0

∣∣∣∣
S(ν, µ, c)

c2
Js

(νµ
c2

)∣∣∣∣ = O
(
|νµ|Re(s)Z(ν, µ,Re(s)) + e8π

√
|νµ||νµ|Re(s)+1

)
.
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This together with Lemma 4.2 implies the absolute convergence of B∞,∞(ν, µ; s) and the desired
bound for |B∞,∞(ν, µ; s)|. This completes the proof of this Lemma. �

We now give the analytic continuation of the Niebur–Poincaré series.

Proposition 4.4. The Niebur–Poincaré series F∞,ν(P, s) has an analytic continuation to

Re(s) > 1/2. Moreover, for fixed P ∈ H3 and δ > 1, the bound

F∞,ν(P, s) = OP,δ

(
max

{
|ν|Re(s)e4π|ν|r, |ν|Re(s)+1e

4δπ|ν|
r

})

holds uniformly for s in any compact set contained in Re(s) > 1/2.

Proof. By Proposition 3.2, we have

F∞,ν(P, s) = rIs(4π|ν|r)
∑

u∈O×
K/{±1}

e2πi tr(νu
2z) +

(2π|ν|)s
sΓ(s)

r1−sϕ∞,∞(−ν; s)(4.1)

+
∑

µ∈Λ∗
ξ

µ6=0

B∞,∞(ν, µ; s)rKs(4π|µ|r)e2πi tr(µz).

For s in a fixed compact set in Re(s) > 1/2 we have, by Lemma 4.3 and (A.12), the bound
∑

µ∈Λ∗
ξ

µ6=0

|B∞,∞(ν, µ; s)rKs(4π|µ|r)| = O

(√
r|ν|σ+1

∑

µ∈D−1

µ6=0

|µ|σ+1/2e8π
√

|ν||µ|e−4π|µ|r
)
,

where σ = Re(s). The inequality

e8π
√

|ν||µ|e−4π|µ|r ≤ e
4δ|ν|π

r e−π(1−δ−1)|µ|r,

which holds for δ > 1, gives
∑

µ∈Λ∗
ξ

µ6=0

|B∞,∞(ν, µ; s)rKs(4π|µ|r)| = Os

(√
r|ν|σ+1e

4δ|ν|π
r

∑

µ∈D−1

µ6=0

|µ|σ+1/2e−π(1−δ−1)|µ|r
)
.(4.2)

In particular, the series on the left hand side converges. This, together with the Fourier ex-
pansion (4.1) and the analytic continuation of ϕ∞,∞(−ν; s), give the analytic continuation of
F∞,ν(P, s). Now, by the asymptotic bound (A.13), we have

(4.3) rIs(4π|ν|r) = O
(
rRe(s)+1|ν|Re(s)e4π|ν|r

)
.

On the other hand, as mentioned in the Introduction, the function ϕ∞,∞(−ν; s) can be expressed
in terms of certain generalized divisors sums and it therefore has at most polynomial growth
with respect to |ν|, uniformly for s in any fixed compact set contained in Re(s) > 0. This,
together with (4.2) and (4.3), gives the result on the growth of |F∞,ν(P, s)|. This completes the
proof of the Proposition. �

We can now state the existence of the meromorphic continuation of Gs(P,Q) together with
precise information about its growth at the cusp ∞.

Theorem 4.5. For fixed P,Q ∈ H3 with r = r(P ) > max{r(Q), r(Q)−1}, the automorphic

Green’s function Gs(P,Q) has an analytic continuation to Re(s) > 1/2, s 6= 1, with a simple

pole at s = 1. Moreover, we have

(4.4) lim
s→1

(
Gs(P,Q)− 1

covol(OK)
E∞(Q, s)

)
= −1 + log(r)

vol(X)
+ o

(
1
)
,

as r → ∞.
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Note that the analyticity of Gs(P,Q) for Re(s) > 1
2
, s 6= 1, is equivalent to Sarnak’s lower

bound for the first “exceptional” discrete eigenvalue of the Laplacian on X ([12], Theorem 3.1).

Proof. Let P,Q ∈ H3 and assume that r = r(P ) > max{r(Q), r(Q)−1}. By Theorem 3.1, we
have

Gs(P,Q) =
1

covol(OK)

(
r1−s

s
E∞(Q, s) + 2

∑

µ∈D−1

µ6=0

F∞,−µ(Q, s) rKs(4π|µ|r)e2πi tr(µz)
)
.

By Proposition 4.4, together with the asymptotic bound (A.12), we have

∑

µ∈D−1

µ6=0

|F∞,−µ(Q, s) rKs(4π|µ|r)| = OQ,δ

(√
r

∑

µ∈D−1

µ6=0

|µ|Re(s)− 1
2 e−4π|µ|r max

{
e4π|µ|r(Q), |µ|e

4δπ|µ|
r(Q)

})

for any δ > 1, uniformly for s in any compact set contained in Re(s) > 1/2. Choosing δ such
that r > max{r(Q), δr(Q)−1} we conclude that the series on the left hand side is convergent.
This proves that Gs(P,Q) has a meromorphic continuation to Re(s) > 1/2 having poles only
where E∞(P, s) has poles, in which case the multiplicities also agree. Since E∞(P, s) admits an
analytic continuation to Re(s) > 0, s 6= 1, with a simple pole at s = 1, we conclude the same
for Gs(P,Q). Now, we note that the above computations also give

(4.5) lim
s→1

(
Gs(P,Q)− r1−s

covol(OK)s
E∞(Q, s)

)
= o

(
1
)
,

as r → ∞. A straight-forward computation using (1.3) gives

(4.6) lim
s→1

(
r1−s

covol(OK)s
E∞(Q, s)− 1

covol(OK)
E∞(Q, s)

)
= −1 + log(r)

vol(X)
.

Formula (4.4) follows by combining (4.5) with (4.6). This completes the proof of the Theorem.
�

5. Proof of the main theorem

To prove our main theorem, we first introduce a building block for the class of functions in
A. More precisely, for P,Q ∈ H3 with P 6= γQ for any γ ∈ Γ, we define

L(P,Q) := lim
s→1

(
Gs(P,Q)− 1

covol(OK)

(
E∞(Q, s) + E∞(P, s)− ϕ∞,∞(0; s)

))
.(5.1)

Recalling (2.12) and (2.10), the above limit exists. This function can be seen as the analogue
of log |j(τ1)− j(τ2)| (see Proposition 5.1 in [7]). The next lemma summarizes the properties of
the function L(P,Q).

Lemma 5.1. The function L(P,Q) satisfies the following properties:

(L1) The function L(P,Q) is Γ-invariant in each variable and can therefore be considered as

a function on X ×X. Moreover, we have L(P,Q) = L(Q,P ).
(L2) For fixed Q ∈ X, we have a singularity of the form

L(P,Q) =
ν(Q)

2π

r(Q)

‖P −Q‖ +OQ(1),

as P → Q, and the function P 7→ L(P,Q) is smooth at any point P ∈ X with P 6= Q.

(L3) For P,Q ∈ X with P 6= Q, we have ∆PL(P,Q) = 0.
14



(L4) For fixed Q ∈ X, we have

L(P,Q) = − 1

vol(X)
− |O×

K |
2 covol(OK)

r2 + o(1),

as r = r(P ) → ∞.

Proof. Properties (L1), (L2), and (L3) follow from properties (G1), (G2), and (G3) of the
Green’s function Gs(P,Q) together with the equality

1

d(P,Q)
=

r(Q)

‖P −Q‖ +OQ(1),

as P → Q. In order to prove property (L4), we consider the Fourier expansion (2.7) of E∞(P, s),
namely the equality

E∞(P, s) =
|O×

K |
2

r1+s + ϕ∞,∞(0; s) r1−s +
21+sπs

Γ(s)

∑

µ∈D−1

µ6=0

|µ|sϕ∞,∞(µ; s) rKs(4π|µ|r)e2πi tr(µz),

where we employed the identity [Γ∞ : Γ′
∞] = |O×

K |/2. A straight-forward computation using
(2.10) gives

lim
s→1

ϕ∞,∞(0; s)(r1−s − 1) = −covol(OK)

vol(X)
log(r).

Since |ϕ∞,∞(µ; 1)| is of at most polynomial growth in |µ| and K1(r) has exponential decay as
r → ∞, we therefore get

lim
s→1

(
E∞(P, s)− ϕ∞,∞(0; s)

)
=

|O×
K |
2

r2 − covol(OK)

vol(X)
log(r) + o(1),

as r → ∞. Property (L4) now follows from this together with (4.4). This completes the proof
of the Lemma. �

The function L(P,Q) is a building block for functions in A. More precisely, we have the
following proposition which can be seen as an analogue of (1.1).

Proposition 5.2. Let F : H3 → R∪{∞} be in A, the class of functions satisfying (A1)–(A4).
Then, the limit F (∞) := limr→∞ F (P ) exists and we have the equality

F (P ) = F (∞) + 2π

m∑

ℓ=1

cℓL(P,Qℓ),

for any P ∈ X with P 6= Qℓ, for ℓ = 1, . . . , m.

Proof. Let us define F̃ (P ), for P ∈ X with P 6= Qℓ, for ℓ = 1, . . . , m, by

F̃ (P ) = F (P )− 2π

m∑

ℓ=1

cℓL(P,Qℓ).

By properties (A3) and (L3), we have that ∆F̃ (P ) = 0 for P 6= Qℓ, ℓ = 1, . . . , m. On the

other hand, properties (A2) and (L2) imply that F̃ (P ) is locally bounded around any point in

X . This implies that F̃ (P ) extends to a smooth function F̃ : X → R satisfying ∆F̃ (P ) = 0
everywhere. Indeed, by taking geodesic normal coordinates around any point, one can reduce
the problem to the case where F̃ (P ) is a harmonic function with respect to the euclidean
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Laplacian, at least locally. The existence of the harmonic extension of F̃ (P ) then follows from
Theorem 2.3 in [2]. Using

∑m
ℓ=1 cℓ = 0, we note that

m∑

ℓ=1

cℓ L(P,Qℓ) =
m∑

ℓ=1

cℓ lim
s→1

(
Gs(P,Qℓ)−

1

covol(OK)
E∞(Qℓ, s)

)

=
m∑

ℓ=1

cℓ lim
s→1

(
Gs(P,Qℓ)−

2

vol(X)(s2 − 1)

)

+
m∑

ℓ=1

cℓ lim
s→1

(
2

vol(X)(s2 − 1)
− 1

covol(OK)
E∞(Qℓ, s)

)

=
m∑

ℓ=1

cℓ lim
s→1

(
Gs(P,Qℓ)−

2

vol(X)(s2 − 1)

)
+

1

vol(X)

m∑

ℓ=1

cℓ log(η∞(Qℓ)rℓ).

As mentioned in Section 2.4, the function

P 7→ lim
s→1

(
Gs(P,Qℓ)−

2

vol(X)(s2 − 1)

)

is square-integrable on X , for fixed Qℓ. This implies that the function

P 7→
m∑

ℓ=1

cℓL(P,Qℓ)

is also square-integrable. By property (A4), we conclude that F̃ (P ) is square-integrable over
X . By Theorem 4.1.8 in [3], p. 140, we know that any smooth, harmonic, square-integrable

function on X is constant. We conclude that F̃ (P ) is constant. Finally, using (L4) together
with

∑m
ℓ=1 cℓ = 0, we have

m∑

ℓ=1

cℓ L(P,Qℓ) = o(1),

as r → ∞. We conclude that F̃ (P ) = F (∞). This proves the result. �

We now prove our main theorem.

Proof of Theorem 1.2. Let F : H
3 → R ∪ {∞} be a function in the class A satisfying the

properties (A1)–(A4). By Proposition 5.2 we have

1

vol(X)

∫

X

F (P )dµ(P ) = F (∞) +
2π

vol(X)

∫

X

m∑

ℓ=1

cℓ L(P,Qℓ)dµ(P ).

Since
∑

ℓ cℓ = 0, we have
∫

X

m∑

ℓ=1

cℓL(P,Qℓ)dµ(P ) =

∫

X

lim
s→1

m∑

ℓ=1

cℓ

(
Gs(P,Qℓ)−

1

covol(OK)
E∞(Qℓ, s)

)
dµ(P )

=

∫

X

m∑

ℓ=1

cℓ lim
s→1

(
Gs(P,Qℓ)−

2

vol(X)(s2 − 1)

)
dµ(P )

+

∫

X

m∑

ℓ=1

cℓ lim
s→1

(
2

vol(X)(s2 − 1)
− 1

covol(OK)
E∞(Qℓ, s)

)
dµ(P ).
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Using (2.13) and (1.4), we obtain
∫

X

m∑

ℓ=1

cℓL(P,Qℓ)dµ(P ) = lim
s→1

m∑

ℓ=1

cℓ

(
2

s2 − 1
− vol(X)

covol(OK)
E∞(Qℓ, s)

)

=

m∑

ℓ=1

cℓ log(η∞(Qℓ) rℓ).

This completes the proof of Theorem 1.2. �

6. Technical lemmas

In this section we prove two lemmas that were used in Section 3 for the computation of the
Fourier coefficients of the Green’s function and of the Niebur–Poincaré series.

Lemma 6.1. For µ, s ∈ C with Re(s) > 0 and r > r̃ > 0, let

Iµ,s(r, r̃) :=

∫

C

ϕs

( |z|2 + r2 + r̃2

2rr̃

)
e−2πi tr(µz)dz

with ϕs(t) = (t +
√
t2 − 1)−s(t2 − 1)−1/2. Then, we have

Iµ,s(r, r̃) =

{
2πs−1r1−sr̃s+1, if µ = 0,

4πrr̃Ks(4π|ν|r)Is(4π|ν|r̃), if µ 6= 0.

Proof. Using polar coordinates z = ρeiθ, we get

Iµ,s(r, r̃) =

∫ 2π

0

∫ ∞

0

ϕs

(
ρ2 + r2 + r̃2

2rr̃

)
e−2πiρ tr(µeiθ)ρ dρdθ.

Letting t = ρ2 and f(t) := (t+ r2 + r̃2)/2rr̃, we have

I0,s(r, r̃) = π

∫ ∞

0

ϕs (f(t)) dt = −2πrr̃

s

[(
f(t) +

√
f(t)2 − 1

)−s
]t=∞

t=0

=
2π

s
r1−sr̃s+1,

where we have used that r > r̃. This proves the first formula. For µ 6= 0, we write µ = |µ|eiα
and get

∫ 2π

0

e−2πiρ tr(µeiθ)dθ =

∫ 2π

0

e−4πiρ|µ| sin(θ)dθ = 2πJ0(4π|µ|ρ),

by using formula (A.1). Replacing this in the above formula for Iµ,s(r, r̃) and making the change
of variables t = ρ2/r2, we get

Iµ,s(r, r̃) = πr2
∫ ∞

0

ϕs

(
r

2r̃

(
t+ 1 +

r̃2

r2

))
J0(4π|µ|r

√
t)dt.

Using formula (A.10), we have

ϕs(b/a) = a

∫ ∞

0

Is(au)e
−budu,

for b > a > 0. Using this identity with a = 2r̃/r and b = t + 1 + r̃2

r2
, we get

Iµ,s(r, r̃) = 2πrr̃

∫ ∞

0

Is

(
2r̃u

r

)
e
−
(

1+ r̃2

r2

)

u
∫ ∞

0

J0(4π|µ|r
√
t)e−tudtdu.
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Formula (A.2) with a = u and b = 4π|µ|r yields

Iµ,s(r, r̃) = 2πrr̃

∫ ∞

0

Is

(
2r̃u

r

)
e
−
(

1+ r̃2

r2

)

u
e−4π2|µ|2r2/udu

u
.

Next, we make the change of variables t = 8π2|µ|2r2/u and we get

Iµ,s(r, r̃) = 2πrr̃

∫ ∞

0

Is

(
ab

t

)
e−

a2+b2

2t e−t/2dt

t
,

with a = 4π|µ|r and b = 4π|µ|r̃. Observing that a > b > 0 and using (A.3) we conclude

Iµ,s(r, r̃) = 4πrr̃Ks(a)Is(b).

This completes the proof of the Lemma. �

Lemma 6.2. For ν, µ, c ∈ C with ν, c both non zero, r > 0, and s ∈ C with Re(s) > 0, put

I(r, ν, µ, c) =

∫

C

r

|c|2(|z|2 + r2)
Is

(
4π|ν|r

|c|2(|z|2 + r2)

)
e
−2πi tr

(

ν z

c2(|z|2+r2)
+µz

)

dz.

Then, we have

I(r, ν, µ, c) =





π1+s2s|ν|s
|c|2(1+s)sΓ(1 + s)

r1−s, if µ = 0,

2π

|c|2 rKs(4π|µ|r) Js
(
νµ
c2

)
, if µ 6= 0,

where Js(z) is given in (3.1).

Proof. We start with the case µ = 0. Using polar coordinates z = ρeiθ, we get

I(r, ν, 0, c) =
r

|c|2
∫ ∞

0

∫ 2π

0

ρ

ρ2 + r2
Is

(
4π|ν|r

|c|2(ρ2 + r2)

)
e
− 4πi|ν|ρ

|c|2(ρ2+r2)
cos(θ)

dθdρ.

Using formula (A.1) and making the change of variables ξ = ρ/r, we get

I(r, ν, 0, c) =
2πr

|c|2
∫ ∞

0

ξ

ξ2 + 1
Is

(
4π|ν|

|c|2r(ξ2 + 1)

)
J0

(
4π|ν|ξ

|c|2r(ξ2 + 1)

)
dξ.

Using Lemma A.1 with a = 4π|ν|
|c|2r , we get

I(r, ν, 0, c) =
π1+s2s|ν|s

|c|2(1+s)sΓ(1 + s)
r1−s.

This proves the first formula. For µ 6= 0, we start by writing

|ν|I
(

r

|µ| , ν, µ, c
)

=

∫

C

|β|r
|µz|2 + r2

Is

(
4π|β|r

|µz|2 + r2

)
e
−2πi tr

(

β zµ

(|zµ|2+r2)

)

−2πi tr(µz)
dz

with β = νµ
c2
. Making the change of variables ξ = µz and using polar coordinates ξ = ρeiθ, we

obtain

|ν|I
(

r

|µ| , ν, µ, c
)

=
|β|r
|µ|2

∫ ∞

0

ρ

ρ2 + r2
Is

(
4π|β|r
ρ2 + r2

)∫ 2π

0

e
−2πi

(

βρe−iθ+βρeiθ

ρ2+r2
+2ρ cos(θ)

)

dθdρ.
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Now, we compute

∫ 2π

0

e
−2πi

(

βρe−iθ+βρeiθ

ρ2+r2
+2ρ cos(θ)

)

dθ =

∫ 2π

0

e
−4πi ρ

ρ2+r2
|β+ρ2+r2| sin(θ)

dθ

= 2πJ0

(
4πρ

ρ2 + r2
|β + ρ2 + r2|

)
,

by formula (A.1). We conclude

|ν|I
(

r

|µ| , ν, µ, c
)

=
2π|β|r
|µ|2

∫ ∞

0

ρ

ρ2 + r2
Is

(
4π|β|r
ρ2 + r2

)
J0

(
4πρ

ρ2 + r2
|β + ρ2 + r2|

)
dρ.

Making the change of variables t = ρ/r, we get

|ν|I
(

r

|µ| , ν, µ, c
)

=
2π|β|r
|µ|2

∫ ∞

0

t

t2 + 1
Is

(
4π|β|

r(t2 + 1)

)
J0

(
4πrt

t2 + 1

∣∣∣∣
β

r2
+ t2 + 1

∣∣∣∣
)
dt.

Now, by formula (A.11) with λ =
∣∣ β
r2(t2+1)

+ 1
∣∣, z = 4πrt, and s = 0, we get

J0

(
4πrt

t2 + 1

∣∣∣∣
β

r2
+ t2 + 1

∣∣∣∣
)

=

∞∑

k=0

(−1)k

k!

1

(t2 + 1)2k

( |β|2
r4

+
tr(β)

r2
(t2 + 1)

)k

(2πrt)kJk(4πrt).

Therefore, using the binomial theorem, we have

|ν|I
(

r

|µ| , ν, µ, c
)

=

2π|β|r
|µ|2

∞∑

k=0

(−1)k(2π)k

k!

k∑

j=0

(
k

j

) |β|2j tr(β)k−j

rk+2j

∫ ∞

0

tk+1

(t2 + 1)k+j+1
Is

(
4π|β|

r(t2 + 1)

)
Jk(4πrt)dt.

Using the power expansion for Is(z) given in formula (A.6), we have

∫ ∞

0

tk+1

(t2 + 1)k+j+1
Is

(
4π|β|

r(t2 + 1)

)
Jk(4πrt)dt

=

(
2π|β|
r

)s ∞∑

ℓ=0

(2π|β|)2ℓr−2ℓ

ℓ! Γ(s+ ℓ+ 1)

∫ ∞

0

tk+1

(t2 + 1)s+k+j+2ℓ+1
Jk(4πrt)dt

=

(
2π|β|
r

)s ∞∑

ℓ=0

(2π|β|)2ℓr−2ℓ

ℓ! Γ(s+ ℓ+ 1)

(2πr)s+k+j+2ℓKs+j+2ℓ(4πr)

Γ(s+ k + j + 2ℓ+ 1)
,

by formula (A.5) with s = k, µ = s+ k + j + 2ℓ, and a = 4πr. This gives

|ν||µ|2
2π|β|rI

(
r

|µ| , ν, µ, c
)

=

∞∑

k=0

k∑

j=0

∞∑

ℓ=0

(−1)k(2π)2s+2k+j+4ℓ|β|s+2j+2ℓ tr(β)k−jKs+j+2ℓ(4πr)

(k − j)!j!ℓ! Γ(s+ ℓ+ 1)Γ(s+ k + j + 2ℓ+ 1) rj

=
∞∑

k=0

∞∑

j=0

∞∑

ℓ=0

(−1)k+j(2π)2s+2k+3j+4ℓ|β|s+2j+2ℓ tr(β)kKs+j+2ℓ(4πr)

k!j!ℓ! Γ(s+ ℓ+ 1)Γ(s+ k + 2j + 2ℓ+ 1) rj
,
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using a well-known identity for the double sum over k and j. Applying this identity again for
the double sum over j and ℓ and using Lemma A.2 with z = 4πr, we get

|ν||µ|2
2π|β|rI

(
r

|µ| , ν, µ, c
)

=
∞∑

k=0

∞∑

j=0

(−1)k+j(2π)2s+2k+3j|β|s+2j tr(β)k

k!j! Γ(s+ k + 2j + 1)rj

j∑

ℓ=0

(
j

ℓ

)
(−2πr)ℓKs+j+ℓ(4πr)

Γ(s+ ℓ+ 1)

= Ks(4πr)

∞∑

j=0

(2π)2s+4j|β|s+2j

j! Γ(s+ j + 1)

∞∑

k=0

(−1)k(2π)2k tr(β)k

k! Γ(s+ k + 2j + 1)
.

Assuming that tr(β) > 0, using formula (A.7) and recalling that β = νµ
c2
, we therefore obtain

I (r, ν, µ, c) =
2π

|c|2rKs(4π|µ|r)
∞∑

j=0

(
(2π)|β|/

√
tr(β)

)s+2j

j! Γ(s+ j + 1)
Js+2j

(
4π

√
tr(β)

)
.

Applying Lemma (A.3) with x = 4π
√

tr(β) and A =
√

β/ tr(β), we get

I (r, ν, µ, c) =
2π

|c|2 rKs(4π|µ|r)Js

(
4π

√
β
)
Js

(
4π

√
β

)

=
2π

|c|2 rKs(4π|µ|r) Js
(νµ
c2

)
.

This implies the second formula in the case µ 6= 0,Re
(
νµ
c2

)
> 0. The case Re

(
νµ
c2

)
< 0 is

completely analogous, so we omit the details. Finally, the case Re
(
νµ
c2

)
= 0 follows from any of

the two other cases by taking the limit β → it, t ∈ R, t 6= 0. This completes the proof of the
Lemma. �

Appendix A. Identities involving special functions

In this appendix we recall some identities involving special functions that are used in the
paper. Most of these identities are well-known and can be found in the literature and for these
we just give a reference. For some of the less-known identities we give sketch of proofs.

We start with the well-known identities. These are

∫ 2π

0

e−ia sin(θ)dθ = 2πJ0(a), a ≥ 0,(A.1)

∫ ∞

0

e−atJ0(b
√
t)dt =

1

a
e−b2/4a, a > 0, b ∈ R,(A.2)

∫ ∞

0

Is

(
ab

t

)
e−

t
2
− 1

2t
(a2+b2)dt

t
= 2Ks(a)Is(b), a > b > 0,Re(s) > −1,(A.3)

∫ ∞

0

xµ−1

(x+ 1)ν
dx =

Γ(µ)Γ(ν − µ)

Γ(ν)
, Re(ν) > Re(µ) > 0,(A.4)

and
∫ ∞

0

ts+1

(t2 + 1)µ+1
Js(at)dt =

(a/2)µKµ−s(a)

Γ(µ+ 1)
, a > 0,−1 < Re(s) < Re

(
2µ+ 3

2

)
,(A.5)
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which can be found in [6] (formulas 8.411-1, 6.614-1, 6.653-2, 6.565-4, and 3.194-3, respectively).
We also have

Is(z) =

∞∑

k=0

(z/2)s+2k

k! Γ(s+ k + 1)
, z ∈ C \ (−∞, 0],(A.6)

Js(z) =
∞∑

k=0

(−1)k(z/2)s+2k

k! Γ(s+ k + 1)
, z ∈ C \ (−∞, 0],(A.7)

and
n∑

ℓ=0

(
n

ℓ

)
(−1)ℓ

Γ(ℓ+ b)

Γ(ℓ+ a)
=

Γ(n + a− b)Γ(b)

Γ(a− b)Γ(n + a)
,(A.8)

in loc. cit. (formulas 8.402, 8.445, and 0.160-2, respectively). For the Gauss hypergeometric
series 2F1(a, b; c; z), we have the transformation property (formula 9.134-2 in loc. cit.)

2F1(a, b; a− b+ 1; z) = (1 + z)−a
2F1

(
a

2
,
1 + a

2
; a− b+ 1;

4z

(1 + z)2

)
.(A.9)

Formulas 4.16-1 in [4] and 5·22-16 in [16] are
∫ ∞

0

Is(at)e
−btdt =

as√
b2 − a2

(b+
√
b2 − a2)−s, Re(s) > −1,Re(b) > |Re(a)|,(A.10)

Js(λz) = λs
∞∑

k=0

(−z/2)k(λ2 − 1)k

k!
Js+k(z).(A.11)

We also have the well-known asymptotic bounds, valid uniformly for s in a compact set con-
tained in the half-plane Re(s) > −1/2,

|Ks(x)| = O
(
x−1/2e−x

)
, for x → ∞, x ∈ R,(A.12)

and

Is(z) = O
(
|z|Re(s)eRe(z)

)
,(A.13)

Js(z) = O
(
|z|Re(s)e| Im(z)|) ,(A.14)

for z → ∞, |arg(z)| ≤ 1
2
π − δ with fixed δ > 0. The asymptotic formulas

Is(z) ∼ Js(z) ∼
(z/2)s

Γ(s+ 1)
, for z → 0,(A.15)

also hold uniformly for s in a fixed compact set.
We now give the less-known identities in the form of several lemmas.

Lemma A.1. We have∫ ∞

0

ξ

ξ2 + 1
Is

(
a

ξ2 + 1

)
J0

(
aξ

ξ2 + 1

)
dξ =

as

2s+1sΓ(s+ 1)

for any a > 0 and s ∈ C with Re(s) > 0.

Proof. Using formulas (A.6) and (A.7), we have
∫ ∞

0

ξ

ξ2 + 1
Is

(
a

ξ2 + 1

)
J0

(
aξ

ξ2 + 1

)
dξ

=
(a
2

)s
∞∑

k,j=0

(−1)ja2k+2j

4k+jk!j! Γ(s+ k + 1)Γ(j + 1)

∫ ∞

0

ξ2j+1

(ξ2 + 1)2k+2j+s+1
dξ.
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By putting x = ξ2, n = k + j, and using formula (A.4), we see that this equals

1

2

(a
2

)s
∞∑

n=0

a2n

4nn! Γ(2n+ s+ 1)

n∑

j=0

(
n

j

)
(−1)j Γ(s+ 2n− j)

Γ(s+ n− j + 1)
.

By formula (A.8) we have

n∑

j=0

(
n

j

)
(−1)j Γ(s+ 2n− j)

Γ(s+ n− j + 1)
= (−1)n

n∑

j=0

(
n

j

)
(−1)jΓ(s+ n + j)

Γ(s+ j + 1)
=

{
s−1, if n = 0,

0, if n ≥ 1.

Replacing this in the previous expression gives the desired formula. �

Lemma A.2. For s, z ∈ C, we have

j∑

ℓ=0

(
j

ℓ

)
(−z/2)ℓKs+j+ℓ(z)

Γ(s+ ℓ+ 1)
=

(−z/2)jKs(z)

Γ(s+ j + 1)
.

Proof. This identity can be proved by induction over j, the case j = 0 being obvious. For the
inductive step one can use the identity

Ks+1(z) = Ks−1(z) +
2s

z
Ks(z)

(see formula 8.468-10 in [6]). We omit the details. �

Lemma A.3. Assume that A ∈ C\]−∞, 0], Re(A2) = 1/2, and x > 0. Then

Js(Ax)Js(Ax) =
∞∑

n=0

(x|A|2/2)s+2n

n! Γ(s+ n + 1)
Js+2n(x)

and similarly

Is(Ax)Is(Ax) =

∞∑

n=0

(x|A|2/2)s+2n

n! Γ(s+ n + 1)
Is+2n(x).

Proof. By using formula (A.7) and collecting the powers of x, we have

Js(Ax)Js(Ax) =
∞∑

ℓ=0

1

ℓ!

(
−x2

4

)ℓ
ℓ∑

n=0

(
ℓ

n

)
A2nA

2ℓ−2n

Γ(s+ n+ 1)Γ(s+ ℓ− n+ 1)

and

∞∑

n=0

(x|A|2/2)s+2n

n! Γ(s+ n + 1)
Js+2n(x) =

∞∑

ℓ=0

(
−x2

4

)ℓ 1

Γ(s+ ℓ+ 1)

[ℓ/2]∑

n=0

|A|4n
n!(ℓ− 2n)! Γ(s+ n+ 1)

,

where [ℓ/2] denotes the integral part of ℓ/2. Putting a = A2 and using that a = 1− a, we get

ℓ∑

n=0

(
ℓ

n

)
A2nA

2ℓ−2n

Γ(s+ n+ 1)Γ(s+ ℓ− n + 1)
=

(1− a)ℓ

Γ(s+ 1)Γ(s+ 1 + ℓ)
2F1

(
−s− ℓ,−ℓ; s+ 1;

a

1− a

)

and

[ℓ/2]∑

n=0

|A|4n
n!(ℓ− 2n)! Γ(s+ n + 1)

=
1

ℓ! Γ(s+ 1)
2F1

(
1− ℓ

2
,− ℓ

2
; s+ 1; 4a(1− a)

)
.
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Thus, we just have to prove the identity

(1− a)ℓ 2F1

(
−s− ℓ,−ℓ; s+ 1;

a

1− a

)
= 2F1

(
1− ℓ

2
,− ℓ

2
; s+ 1; 4a(1− a)

)
.

This follows from identity (A.9) applied to a = −ℓ, b = −s−ℓ, and z = a/(1−a). This completes
the proof of the first formula. The proof of the second formula is completely analogous, so we
omit the details. �

References

[1] Asai, T.: On a certain function analogous to log|η(z)|. Nagoya Math. J. 40 (1970), 193–211.
[2] Axler, S., Bourdon, P., and Wade, R.: Harmonic function theory. Graduate Texts in Mathematics 137,

Springer-Verlag, New York, 2001.
[3] Elstrodt, J., Grunewald, F., and Mennicke, J.: Groups acting on hyperbolic space. Harmonic analysis and

number theory. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
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