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Abstract. In 2008, M. Kaneko made several interesting observations about
the values of the modular j invariant at real quadratic irrationalities. The
values of modular functions at real quadratics are defined in terms of their
cycle integrals along the associated geodesics. In this paper we prove some of
the conjectures of M. Kaneko for a general modular function.

1. Introduction

Let Γ = SL(2,Z), and j(z) = 1
q
+ 744 + 196884q + · · · be the classical Klein’s

modular invariant. The values of j at imaginary quadratic irrationalities have a
long and rich history going back to Kronecker and Weber and play an important
role in the theory of complex muliplication. They have also seen considerable
recent interest due to the beautiful results of Borcherds and Zagier, which relate
their traces to the coefficients of half integral weight modular forms.

For a real quadratic irrationality w ∈ Q(
√
D), the “value" f(w) of a general

modular function f has been defined only recently in [4] and [3] using their periods
along the closed geodesic associated to w. In [3], their traces TrDj :=

∑

j(w),

where the sum is over the finitely many ideal classes of Q(
√
D), were related to

the coefficients of mock modular forms, generalizing the results of Borcherds and
Zagier. As was conjectured in [3] and proved in [2] and [5], we also know that

(1)
TrD(j)

TrD(1)
→ 720,

as fundamental discriminants D → ∞.
In this paper we turn to the study of the individual values of modular functions

at real quadratic irrationalities. Even though the arithmetic/algebraic properties
of their individual values remain inaccessible, in [4], Kaneko studied the numerical
values of j(w) and made several remarkable observations. Some of his observa-
tions involving the values of j at Markov quadratics were recently proved in [1].
For a general quadratic irrationality, among his many observations, we note the
following boundedness conjecture.
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Conjecture 1 (Kaneko). Let w ∈ Q(
√
D) be a real quadratic irrationality. Then

Re(jnor(w)) ∈ [jnor((1 +
√
5)/2), 744] and Im(jnor(w)) ∈ (−1, 1)

where

jnor(w) :=
1

2 log ε

∫

Cw

j(z)ds,

Cw is the closed geodesic associated to w in Γ\H, ε > 1 is the smallest unit with

positive norm in Q(
√
D) and ds is the hyperbolic arc length.

In what follows we take a closer look at the individual values f(w) for any real
quadratic irrationality w and any modular function f(z) which takes real values
on the geodesic arc {eiθ : π/3 ≤ θ ≤ 2π/3}. As a special case of our results we
prove

Theorem 1. Let j(z) be the classical modular invariant. Let w be a real quadratic
number and (a1, . . . , an) be its period in the negative continued fraction expansion.
Then we have

(1) For any positive integer N > 2, the value jnor((N)) for the quadratic
number w = (N) is real and

lim
N→∞

jnor((N)) = 744.

(2) Re(jnor(w)) ≤ 744.

(3) If all the partial quotients ar in the period of w satisfy ar ≥ 3M with
M = e55 then

Re(jnor(w)) ≥ jnor((1 +
√
5)/2).

The second part of Theorem 1 proves the upper bound conjectured by Kaneko
for any w while the first part shows that in fact this bound is optimal. Part(1),
when combined with the limiting behavior of the traces in equation (1), also has
the amusing corollary that there are infinitely many discriminants of the form
D = N2 − 4 with class number bigger than one and only finitely many such
discriminants with class number one. This corollary was also observed in the
master thesis of S. Päpcke. In [6] another proof of part (1) of Theorem 1 was also
given.

It is worth noting that Part (3) of the theorem can be rephrased in terms of
the diophantine properties of the quadratic numbers, more precisely in terms of
the Lagrange spectrum. For any irrational number x, let ‖x‖ denote the distance
from x to a closest integer. Then recall that the Lagrange spectrum L is defined
as

L := {ν(x)}x∈R ⊆
[

0, 1/
√
5
]

with ν(x) = lim inf
q→∞

q‖qx‖.

It is known that if x has a continued fraction (a1, a2, . . .) then ν(x) ≤ infr≥1 a
−1
r .

Hence part (3) of Theorem 1 proves the lower bound conjectured by Kaneko for
the quadratic irrationalities w with ν(w) ∈ [0, 1/3M ].



VALUES OF MODULAR FUNCTIONS AT REAL QUADRATICS 3

After giving some preliminaries in the next section, we will collect several
technical results in Section 3 that will be needed in the sequel. In Section 4,
we start by proving the first part of Theorem 1 for a general modular function
which takes real values on the geodesic arc {eiθ : π/3 ≤ θ ≤ 2π/3}. The results
from Section 3 are then used to prove Theorem 4.2, which compares the values
of modular functions at different quadratic irrationalities by comparing their
corresponding partial quotients. Theorem 4.2 is the main theorem of this paper
and the results (2) and (3) in Theorem 1 follow as its simple corollaries.

2. preliminaries

Let w be a real quadratic irrationality and w̃ be its conjugate. w and w̃ are
the roots of a quadratic equation

ax2 + bx+ c = 0 (a, b, c ∈ Z, (a, b, c) = 1)

with discriminant D = b2 − 4ac > 0. We choose a, b, c such that w = −b+
√
D

2a
,

w̃ = −b−
√
D

2a
. The geodesic Sw in H joining w and w̃ is given by the equation

a|z|2 + bRe(z) + c = 0 (z ∈ H).

The stabilizer Γw of w in Γ preserves the quadratic form Qw = [a, b, c], and hence
Sw. Let Aw be the generator of the infinite cyclic group Γw with

Aw =

(

1
2
(t− bu) −cu
au 1

2
(t+ bu)

)

,

where (t, u) is the smallest positive solution to Pell’s equation t2 −Du2 = 4. We

denote by ε = (t+ u
√
D)/2 the smallest unit with positive norm, which is either

a fundamental unit or the square of a fundamental unit.
For any modular function f , since the group Γw preserves the expression

f(z)Qw(z, 1)
−1dz, one can define the cycle integral of f along Cw = Γw\Sw,

also viewed as the “value" of f at w, by the complex number

f(w) :=

∫

Cw

√
Df(z)

Qw(z, 1)
dz.

The factor
√
D is introduced here for convenience. The integral defining f(w)

is Γ-invariant and can in fact be taken along any path in H from z0 to A−1
w z0,

where z0 is any point in H. Note that this gives an orientation on Sw from w to
w̃, which is counterclockwise if a > 0 and clockwise if a < 0. We normalize the
number f(w) by the length of the geodesic Cw which is given by

∫

Cw

√
D

Qw(z, 1)
dz = 2 log ε

and we define the normalized value as

fnor(w) :=
f(w)

2 log ε
.
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For any quadratic irrationality w, it is known that the hyperbolic element Aw

is conjugate to a word in positive powers of T and V , where

T =

(

1 1
0 1

)

, V =

(

1 0
1 1

)

.

For a quadratic number w which has a purely periodic negative continued
fraction, such a word is the element A = A−1

1 . . . A−1
ℓw

that fixes w − 1. Here
Ai ∈ {T−1, V −1} for 1 ≤ i ≤ ℓw are given by the finite algorithm:

(2) w0 = w − 1, wi+1 = Ai+1(w
i) (i ≥ 0),

where

Ai+1 =

{

T−1 if ⌊wi⌋ ≥ 1,
V −1 otherwise.

Since the cycle integral defining f(w) is a class invariant, we have the following
simple lemma.

Lemma 2.1. For a real quadratic w we have

(3) f(w) = f(w − 1) =

∫ ρ2

ρ

ℓw−1
∑

i=0

f(z)

(

1

z − wi
− 1

z − w̃i

)

dz

where ρ = eπi/3.

Let w be a purely periodic quadratic number and a1, . . . , an be its period in
its negative continued fraction. We let

wr,k = (k, ar+1, . . . , an, a1, . . . , ar),

w̃r,k = −(ar − k, ar−1, . . . , a1, an, . . . , ar).

Note that each wr,k arises for 1 ≤ k ≤ ar − 1 as one of the wi’s from (2).
If r is fixed and there is no possible confusion, we will drop the dependence on

r and write wk := wr,k for simplicity.

3. Technical lemmas

Let w = (a1, . . . , an) and v = (b1, . . . , bm) be two purely periodic quadratic
numbers with n ≥ m. If n > m, then we define bm+1, bm+2, . . . , bn by cycling
back to b1, b2, etc. For a fixed r, let

(4) Sw,v(z, r) :=
ar−1
∑

k=1

( 1

z − wr,k

− 1

z − w̃r,k

)

−
br−1
∑

k=1

( 1

z − vr,k
− 1

z − ṽr,k

)

.

Theorem 3.1. Let w = (a1, . . . , an) and v = (b1, . . . , bm) be two purely periodic
quadratic numbers. If ar ≤ br for all r = 1, . . . , n, then we have for θ ∈ [π

3
, 2π

3
]

(5) C2(r) < Re(Sw,v(e
iθ, r)) < C1(r)
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with

C1(r) = 12.6 +
7

3

(

log
( br − 3 + k1
ar − 3 + k1

)

− 4

ar − 3 + k1
− 3

(ar − 3 + k1)2

)

,

C2(r) = −3.925 +
(

1− 2

ar
+

1

2a2r

)(

2 log
( br + 1 + k0
ar + 2 + k0

)

− 5

ar + 2 + k0

)

,

and

(6) −13.01 < Im(Sw,v(e
iθ, r)) < 14.99.

To prove Theorem 3.1, we start with the following two simple lemmas.

For x, y ∈ R, θ ∈ [π
3
, 2π

3
], let

(x− y)Fx,y(θ) = Re
( 1

eiθ − x
− 1

eiθ − y

)

and

(x− y)Gx,y(θ) = Im
( 1

eiθ − x
− 1

eiθ − y

)

,

so that

Fx,y(θ) =
cos2 θ − (x+ y) cos θ + xy − sin2 θ

((cos θ − x)2 + sin2 θ)((cos θ − y)2 + sin2 θ)
and

Gx,y(θ) =
sin θ(x+ y − 2 cos θ)

((cos θ − x)2 + sin2 θ)((cos θ − y)2 + sin2 θ)
.

Lemma 3.2. As a function of θ ∈ [π
3
, 2π

3
], Fx,y(θ) satisfies the following proper-

ties:

(i) Fx,y(θ) is decreasing for x, y ∈ (2,∞) and increasing for x, y ∈ (−∞,−2).
(ii) For 0 ≤ |x| ≤ 1 and 0 ≤ |y| ≤ 1, we have

−1.4 < Fx,y(θ) < 0.2.

(iii) For 1 ≤ |x| ≤ 2 and 1 ≤ |y| ≤ 2, we have

−0.5 < Fx,y(θ) < 0.2.

(iv) For x ≥ 2 and y ≤ −2,

min(xy − |x+y|
2

− 1
2
, xy − 1)

((−1
2
+ x)2 + 3

4
)((1

2
+ y)2 + 3

4
)
< Fx,y(θ) <

xy + |x+y|
2

− 1
2

((1
2
+ x)2 + 3

4
)((−1

2
+ y)2 + 3

4
)
.

Proof. The last assertion is straightforward using the definition of the function
Fx,y(θ). The other three assertions can be easily verified numerically. For exam-
ple, for x > 2 and y > 2 the maximum of the derivative dF

dθ
is −0.00504971 where

as its minimum is −0.19245. This shows that for x > 2 and y > 2, dF
dθ

< 0 and
hence Fx,y(θ) is decreasing.

�
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Similarly one can prove

Lemma 3.3. As a function of θ ∈ [π
3
, 2π

3
], Gx,y(θ) satisfies the following proper-

ties:

(i) Gx,y(θ) is decreasing for x, y ∈ (1,∞) and for x, y ∈ (−∞,−1).
(ii) Gx,y(θ) is increasing for x ∈ (1,∞) and y ∈ (−∞,−1).
(iii) For 0 ≤ |x| ≤ 1 and 0 ≤ |y| ≤ 1, we have

−0.9 ≈ G0,0(e
πi/3) ≤ Gx,y(θ) ≤ G0,0(e

2πi/3) ≈ 0.9.

Proof. (Theorem 3.1): We start by grouping some of the terms from Sw,v into two
sums S1 and S2 (S1 corresponding to terms wk, vk and S2 to conjugates w̃k, ṽk)
whose contribution, as we will see, will be minor. Since r is fixed in the whole
proof, we drop the dependence on r in the notation for all these sums. Define

S1(z) :=

ar−1
∑

k=1

1

z − wk
− 1

z − vk
,

S2(z) :=
ar−1
∑

k=1

1

z − w̃k

− 1

z − ṽbr−ar+k

.

We group the remaining terms from Sw,v in the sum S3, which will be the major
contribution:

S3(z) =

br−1
∑

k=ar

1

z − vk
− 1

z − ṽbr−k
.

Hence,

(7) Sw,v(z, r) = S1(z)− S2(z)− S3(z).

3.1. Proof of equation (5). The real part of S1(e
iθ) satisfies

Re(S1(e
iθ)) = (w0 − v0)

ar−1
∑

k=1

Fwk,vk(θ).

For 3 ≤ k ≤ ar − 1, since ⌊wk⌋ = ⌊vk⌋ = k − 1 > 2, by Lemma 3.2 (i),

Fwk,vk(θ) < Fwk,vk(π/3) <
k2 − k + 1

2

(k2 − 3k + 3)2

and

Fwk,vk(θ) > Fwk,vk(2π/3) >
k2 − k − 1

2

(k2 + k + 1)2
.

Since −1 < w0 − v0 < 0 and using Lemma 3.2 (ii)-(iii), we have

Re(S1(e
iθ)) < (w0 − v0)

(

− 1.9 +

ar−1
∑

k=3

k2 − k − 1
2

(k2 + k + 1)2

)

< (w0 − v0)(−1.9 + 0.2162) < 1.683(8)



VALUES OF MODULAR FUNCTIONS AT REAL QUADRATICS 7

and

Re(S1(e
iθ)) > −0.4 −

ar−1
∑

k=3

k2 − k + 1
2

(k2 − 3k + 3)2

> −0.4 − 1.26271 > −1.66271.(9)

The real part of S2(e
iθ) satisfies

Re(S2(e
iθ)) = (w̃ar − ṽbr)

ar−1
∑

k=1

Fw̃k,ṽbr−ar+k
(θ).

For 1 ≤ k ≤ ar − 3, ⌊w̃k⌋ = ⌊ṽbr−ar+k⌋ = −ar + k < −2 and hence by Lemma
3.2 (i), we have

Fw̃k,ṽbr−ar+k
(θ) < Fw̃k,ṽbr−ar+k

(2π/3) <
(ar − k)2 − (ar − k) + 1

2

((ar − k)2 − 3(ar − k) + 3)2

and

Fw̃k,ṽbr−ar+k
(θ) > Fw̃k,ṽbr−ar+k

(π/3) >
(ar − k)2 − (ar − k)− 1

2

((ar − k)2 + (ar − k) + 1)2
.

Since ⌊w̃ar⌋ = ⌊ṽbr⌋ = 0 and br ≥ ar, 0 < w̃ar − ṽbr < 1 and using Lemma 3.2
(ii)-(iii),

Re(S2(e
iθ)) < 0.4 +

ar−3
∑

k=1

(ar − k)2 − (ar − k) + 1
2

((ar − k)2 − 3(ar − k) + 3)2

< 0.4 +

ar−1
∑

k=3

k2 − k + 1
2

(k2 − 3k + 3)2

< 0.4 + 1.26271 < 1.66271(10)

and

Re(S2(e
iθ)) > (w̃ar − ṽbr)

(

− 1.9 +

ar−3
∑

k=1

(ar − k)2 − (ar − k)− 1
2

((ar − k)2 + (ar − k) + 1)2

)

> −1.9.(11)

The real part of S3(e
iθ) satisfies

Re(S3(e
iθ)) =

br−1
∑

k=ar

(2k + v0 − ṽbr)Fvk ,ṽbr−k
(θ).

Since −⌊ṽbr−k⌋ = ⌊vk⌋ = k, for k ≥ 3, by Lemma 3.2 (iv),

−k2 − 3
2

(k2 − 3k + 3)2
< Fvk ,ṽbr−k

(θ) <
−k2 + 2k − 1

2

(k2 + k + 1)2
.
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Therefore,

Re(S3(e
iθ)) < 0.6 +

br−1+k0
∑

k=ar+k0

(2k − 1)
−k2 + 2k − 1

2

(k2 + k + 1)2

< 0.6−
br+1+k0
∑

k=ar+2+k0

(2k − 5)
1− 2

ar
+ 1

a2r

k2

< 0.6−
(

1− 2

ar
+

1

2a2r

)(

2 log
( br + 1 + k0
ar + 2 + k0

)

− 5

ar + 2 + k0

)

(12)

with k0 = 1 if ar = 2 or k0 = 0 otherwise. We also have

Re(S3(e
iθ)) > −2 +

br−1+k1
∑

k=ar+k1

2k(−k2 − 3
2
)

(k2 − 3k + 3)2

> −9− 7

3

br−3+k1
∑

k=ar−3+k1

k + 3

k2

> −9− 7

3

(

log
( br − 3 + k1
ar − 3 + k1

)

− 4

ar − 3 + k1
− 3

(ar − 3 + k1)2

)

(13)

with

k1 =







2 if ar = 2
1 if ar = 3
0 if ar ≥ 4.

By (7), (8), (11) and (13) we have that
(14)

Re(Sw,v(e
iθ), r) < 12.6 +

7

3

(

log
( br − 3 + k1
ar − 3 + k1

)

− 4

ar − 3 + k1
− 3

(ar − 3 + k1)2

)

and by (9), (10) and (12),
(15)

Re(Sw,v(e
iθ), r) > −3.925 +

(

1− 2

ar
+

1

2a2r

)(

2 log
( br + 1 + k0
ar + 2 + k0

)

− 5

ar + 2 + k0

)

3.2. Proof of equation (6). The imaginary part of S1(e
iθ) satisfies

Im(S1(e
iθ)) = (w0 − v0)

ar−1
∑

k=1

Gwk,vk(θ).

For k ≥ 2, by Lemma 3.3 (i),

Gwk,vk(θ) < Gwk,vk(e
πi/3) <

√
3
2
(2k − 1)

(k2 − 3k + 3)2
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and

Gwk,vk(θ) > Gwk,vk(e
2πi/3) >

√
3
2
(2k − 1)

(k2 + k + 1)
.

Since −1 < w0 − v0 < 0 and using Lemma 3.3 (iii), we have

Im(S1(e
iθ)) < (w0 − v0)

(

− 0.9 +

ar−1
∑

k=2

√
3
2
(2k − 1)

(k2 + k + 1)2

)

< 0.9(16)

and

Im(S1(e
iθ)) > −0.9−

ar−1
∑

k=2

√
3
2
(2k − 1)

(k2 − 3k + 3)2

> −0.9− 3.30834

> −4.20834.(17)

The imaginary part of S2(e
iθ) satisfies

Im(S2(e
iθ)) = (w̃ar − ṽbr)

ar−1
∑

k=1

Gw̃k,ṽbr−ar+k
(θ).

For 1 ≤ k ≤ ar − 2, by Lemma 3.3 (i),

Gw̃k,ṽbr−ar+k
(θ) < Gw̃k,ṽbr−ar+k

(π/3) <

√
3(k − ar +

1
2
)

((ar − k)2 + ar − k + 1)2

and

Gw̃k,ṽbr−ar+k
(θ) > Gw̃k,ṽbr−ar+k

(2π/3) >

√
3(k − ar +

1
2
)

((ar − k)2 − 3(ar − k) + 3)2
.

Since 0 < w̃ar − ṽbr < 1 and using Lemma 3.3 (iii), we have

Im(S2(e
iθ)) < 0.9 +

ar−2
∑

k=1

√
3(k − ar +

1
2
)

((ar − k)2 + ar − k + 1)2

< 0.9−
ar−1
∑

k=2

√
3(k + 1

2
)

(k2 + k + 1)2

< 0.9(18)
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and

Im(S2(e
iθ)) > (w̃ar − ṽbr)

(

− 0.9 +
ar−2
∑

k=1

√
3(k − ar +

1
2
)

((ar − k)2 − 3(ar − k) + 3)2

)

> (w̃ar − ṽbr)
(

− 0.9−
ar−1
∑

k=2

√
3(k + 1

2
)

(k2 − 3k + 3)2

)

> (w̃ar − ṽbr)(−0.9− 5.28674)

> −6.18674.(19)

The imaginary part of S3(e
iθ) satisfies

Im(S3(e
iθ)) =

br−1
∑

k=ar

(2k + v0 − ṽbr)Gvk,ṽbr−k
(θ).

For k ≥ 2, by Lemma 3.3 (ii),

Gvk ,ṽbr−k
(θ) < Gvk,ṽbr−k

(2π/3) <

√
3

(k2 − k + 1)(k2 − 3k + 3)

and

Gvk ,ṽbr−k
(θ) > Gvk,ṽbr−k

(π/3) > −
√
3

(k2 − 3k + 3)(k2 − k + 1)
.

Therefore,

Im(S3(e
iθ)) <

br−1
∑

k=ar

√
3(2k + v0 − ṽbr)

(k2 − k + 1)(k2 − 3k + 3)

<
30
√
3

7
+

br−1+k1
∑

k=ar+k1

2
√
3

k(k − 1)(k − 3)

< 7.9042(20)

and

Im(S3(e
iθ)) > −

br−1
∑

k=ar

√
3(2k + v0 − ṽbr)

(k2 − 3k + 3)(k2 − k + 1)

> −30
√
3

7
−

br−1+k1
∑

k=ar+k1

2
√
3

k(k − 1)(k − 3)

> −7.9042.(21)

By (7), (16), (19) and (21), we have

(22) Im(Sw,v(e
iθ, r)) < 14.99
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and by (17), (18) and (20),

(23) Im(Sw,v(e
iθ, r)) > −13.01.

�

The following corollary of Theorem 3.1 is crucial for the next section.

Corollary 3.4. Let w = (a1, . . . , an) and v = (b1, . . . , bm) be two purely periodic
quadratic numbers. If br ≥ Mar for every r, then there exist constants K1(M)
and K2(M) such that

K2(M) < cos θIm(Sw,v(e
iθ, r)) + sin θRe(Sw,v(e

iθ, r)) < K1(M).

Moreover if M ≥ e55, then K1(M) and K2(M) are positive.

Proof. This follows easily from the bounds (14), (15), (22), (23) together with
the simple observation that for π/3 ≤ θ ≤ 2π/3, −1/2 ≤ cos θ ≤ 1/2 and√
3/2 ≤ sin θ ≤ 1. �

4. Values of Modular functions

We start this section by looking at the sequence of values fnor((N)), N > 2
for a modular function which is real on the geodesic arc {eiθ : π/3 ≤ θ ≤ 2π/3}.
We have

Theorem 4.1. Let f(z) =
∑

n≥0 c(n)q
n be a modular function which is real valued

on the geodesic arc {eiθ : π/3 ≤ θ ≤ 2π/3}. For any positive integer N > 2, the
value fnor((N)) for the quadratic number w = (N) is real and

lim
N→∞

fnor((N)) = −
∫ 2π/3

π/3

f(eiθ) sin θ dθ = c(0).

In particular we have

lim
N→∞

jnor((N)) = 744.

Proof. Let w = (N). We have that w = N+
√
N2−4
2

and Qw = [1,−N, 1]. Hence
Pell’s equation becomes

t2 − (N2 − 4)u2 = 4,

with (N, 1) being the smallest positive solution. Thus εw = N+
√
N2−4
2

.

Since wk = (k,N) = −w̃N−k,

fnor((N)) =

∫ ρ2

ρ

f(z)

2 log εw

N−1
∑

k=1

DN (z, k)dz

with

DN(z, k) =
1

z − wk

− 1

z + wk

.
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Hence

Re(fnor((N))) = −
∫ 2π/3

π/3

f(eiθ)

2 log εw

N−1
∑

k=1

cos θIm(DN(e
iθ, k))+sin θRe(DN(e

iθ, k))dθ

and

Im(fnor((N))) =

∫ 2π/3

π/3

f(eiθ)

2 log εw

N−1
∑

k=1

cos θRe(DN (e
iθ, k))− sin θIm(DN(e

iθ, k))dθ.

Now

(24) Re(DN(e
iθ, k)) =

2wk(cos
2 θ − w2

k − sin2 θ)

((cos θ − wk)2 + sin2 θ)((cos θ + wk)2 + sin2 θ)

and

(25) Im(DN(e
iθ, k)) =

−4wk sin θ cos θ

((cos θ − wk)2 + sin2 θ)((cos θ + wk)2 + sin2 θ)
,

so in particular
Re(DN(e

iθ, k)) = Re(DN (e
i(π−θ), k))

and
Im(DN(e

iθ, k)) = −Im(DN(e
i(π−θ), k)).

Therefore

Im(fnor((N))) =

∫ π/2

π/3

f(eiθ)

2 log εw

N−1
∑

k=1

cos θRe(DN (e
iθ, k))− sin θIm(DN(e

iθ, k))dθ+

∫ π/2

π/3

f(ei(π−θ))

2 log εw

N−1
∑

k=1

cos θRe(DN(e
i(π−θ), k))− sin θIm(DN (e

i(π−θ), k))dθ

= 0.

Since wk = k − 1
ar+1− 1

···

, it follows from εw = N+
√
N2−4
2

, (24) and (25) that, for

all θ ∈ [π
3
, 2π

3
],

lim
N→∞

1

2 log εw

N−1
∑

k=1

cos θIm(DN(e
iθ, k)) + sin θRe(DN(e

iθ, k)) = sin θ.

Thus

lim
N→∞

fnor((N)) = −
∫ 2π/3

π/3

f(eiθ) sin θ dθ = c(0).

�

Our next result compares the values of a modular function at two different
quadratic irrationalities by comparing their corresponding partial quotients. The
results that were given in the introduction will then follow as corollaries of this
main result. More precisely we have
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Theorem 4.2. Let f(z) =
∑

n≥0 c(n)q
n be a modular function which is real

valued on the geodesic arc {eiθ : π/3 ≤ θ ≤ 2π/3}. Suppose that

(26) Re(fnor((1 +
√
5)/2)) < c(0).

Then the following holds: Let w and v be two quadratic numbers with respective
periods a1, . . . , an and b1, . . . , bm such that m divides n. If M = e55 and br ≥ Mar
for all r = 1, . . . , n, then

Re(fnor(w)) < Re(fnor(v)).

Remark 4.3. As the proof of Theorem 4.2 will show, the condition (26) can be
replaced by the condition that Re(fnor(α)) < c(0) for some quadratic number α.

Proof. We have that

f(w)− f(v) =

∫ ρ2

ρ

f(z)

n
∑

r=1

Sw,v(z, r)dz

with Sw,v(z, r) defined as in (4), so

Re(f(w)−f(v)) = −
∫ 2π/3

π/3

f(eiθ)
n

∑

r=1

cos θIm(Sw,v(e
iθ, r))+sin θRe(Sw,v(e

iθ, r))dθ.

By Theorem 3.1 and Corolary 3.4 we obtain

(27) Re(f(v)) = Re(f(w)) + µ(M)

with

nK2(M)

∫ 2π/3

π/3

f(eiθ)dθ < µ(M) < nK1(M)

∫ 2π/3

π/3

f(eiθ)dθ,

K1(M), K2(M) being the positive constants from Corollary 3.4.
In particular, if f = 1, then

(28) log εv = log εw + λ(M)

with
π

3
nK2(M) < λ(M) <

π

3
nK1(M).

By definition, the inequality

Re(fnor(w)) < Re(fnor(v))(29)

holds if and only if

(30) Re(f(w)) log εv < Re(f(v)) log εw.

Now (27) and (28) imply that (30) is equivalent to

(31) Re(fnor(v)) <
µ(M)

λ(M)
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or also to

(32) Re(fnor(w)) <
µ(M)

λ(M)
.

Since the last inequality does not depend on v and is equivalent to (31), the
inequality (31) holds either for all or for no v.

We first show that
µ(M)

λ(M)
> c(0). Suppose on the contrary

µ(M)

λ(M)
≤ c(0). Let

v = (N). For any ǫ > 0, for large enough N > N0 using Theorem 4.1 we have

Re(fnor(v)) > c(0)− ǫ > µ(M)
λ(M)

.

But then, since (31) is equivalent to (29), for N > max {3M,N0} and w = 1+
√
5

2
,

we have

Re(fnor(w)) = Re(fnor(1 +
√
5)/2) > Re(fnor(v)) > c(0)− ǫ.

Since this contradicts the assumption (26), we must indeed have
µ(M)

λ(M)
> c(0).

Then with w = 1+
√
5

2
, we have Re(fnor(w)) = Re(fnor(1+

√
5

2
)) < c(0) <

µ(M)

λ(M)
.

Hence for every v = (b1, . . . , bm) with br > 3M we have that

Re(fnor(v)) <
µ(M)

λ(M)
.

Now choose v0 = (b1, . . . , bm) with br > max {3M,Mar}. Then for this v0 we

have Re(fnor(v0)) <
µ(M)

λ(M)
and hence Re(fnor(w)) <

µ(M)

λ(M)
. But this equivalent

to
Re(fnor(w)) < Re(fnor(v)).

�

We have the following immediate corollaries.

Corollary 4.4. For any quadratic number w, and any modular function f which
satisfies the conditions of Theorem 4.2 we have

Re(fnor(w)) ≤ −
∫ 2π/3

π/3

f(eiθ) sin θ dθ = c(0).

Proof. For any w = (a1, . . . , an), choose N ∈ N large enough, so that N ≥ e55ar
for all 1 ≤ r ≤ n. Then by Theorem 4.2 we have

Re(fnor(w)) < Re(fnor(N)).

Using Theorem 4.1, this gives

Re(fnor(w)) < lim
N→∞

Re(fnor(N)) = c(0).

�
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Corollary 4.5. Let f be a modular function which satisfies (26) and v be a
quadratic number. If all the partial quotients in the period of v are greater than
3M, then

Re(fnor(v)) ≥ fnor((1 +
√
5)/2).

Proof. This follows from Theorem 4.2 applied to w = 1+
√
5

2
= (2, 3̄). �

Finally, these corollaries prove Theorem 1 since for the j invariant the assump-
tion in the statement of Theorem 4.2 is easily verified. Namely, we have

Re(jnor((1 +
√
5)/2)) = 706.3248 . . . < 744.
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